
Special Issue on “Digital Libraries in Medicine”
Real-Time Digital Libraries Based on Widely Distributed, High
Performance Management of Large-Data-Objects
William Johnston, Jin Guojun, Case Larsen, Jason Lee, Gary Hoo, Mary Thompson, Brian Tierney,
and Joseph Terdiman, M.D.*

Imaging and Distributed Computing Group, Information and Computing Sciences Division, Ernest Orlando Lawrence Berkeley National Labora-
tory,1 Berkeley, CA 94720, USA
* Kaiser Permanente, Division of Research, Oakland, CA 94611, USA

Abstract: We describe a distributed, wide area network based
approach to collecting, cataloguing, storing, and providing Web
access for large-data-objects that originate as high-speed data
streams. Such data streams result from the operation of many
types of on-line instruments and imaging systems, and are a
“staple” of modern intelligence, scientific, and health care
environments. The approach provides for real-time conversion
of the data streams and large datasets to “objects” that are
manageable, extensible, searchable, browsable, persistent, and
available to both “ordinary” and high performance applications
through the integration of a high-speed distributed cache and
transparent management of tertiary storage. The user interfaces
— for both application users and data collection curators —
are provided by the capabilities of the World Wide Web.

The capabilities of the architecture are not unlike a digital
library system, and we give an example of a digital image library
that has been built using this architecture. However, our
approach particularly addresses the issues involved in creating
such digital library-like collections automatically from the high
date-rate, real-time output of, e.g., satellite imaging systems, sci-
entific instruments, health care imaging systems, etc.

We discuss the capabilities, architecture, and implementa-
tion of such a system, as well as several example applications in
data-intensive environments. The applications include a metro-
politan area ATM network based, on-line health care video
imaging system, and several image database applications,
including a photographic-image library (see [9]). We also
describe the security architecture used to enforce data owner
imposed access conditions.

Keywords: on-line high data-rate instruments, large-scale stor-
age, high-speed networks, tertiary storage management, digital
libraries

1 Introduction

We are evolving a strategy for using high-speed wide-area
networks as enablers for widely available high capacity, high
performance storage systems, and for the management of data
from on-line instruments and imaging systems. The high-level
goal is to dramatically increase our ability to capture, organize,
search, and provide high-performance and location
independent access to “large-data-objects” (LDOs). The data-
components of these objects — typically the result of a single
operational cycle of a scientific instrument, medical imaging
system, or supercomputer run, and of sizes from tens of
megabytes to tens of gigabytes — are the staple of modern
analytical environments. It is also the case that many of the
systems that generate such data-objects are used by a diverse
and geographically distributed community — examples from
the sciences include physics and nuclear science high energy
particle accelerators and detector systems, large electron
microscopes, ultra-high brilliance X-ray sources, etc. The
health care community has similarly complex imaging and
instrumentation systems. In all of these cases, dispersed user
communities require location independent access to the data.

In any scenario where data is generated in large volumes and
with high throughput, and especially in a distributed environ-
ment where the people generating the data are geographically
separated from the people cataloguing or using the data, there
are several important considerations for managing instrument
generated data:

• automatic generation of at least minimal metadata;
• automatic cataloguing of the data and the metadata as the

data is received (or as close to real time as possible);

1. The work described in this paper is supported by the U. S. Dept. of Energy,
Office of Energy Research, Office of Computational and Technology
Research, Mathematical, Information, and Computational Sciences Division
(http://www.er.doe.gov/production/octr/mics) and the ER-LTT program,
under contract DE-AC03-76SF00098 with the University of California, and by
DARPA, Computer Systems Technology Office (http://ftp.arpa.mil/
ResearchAreas.html). Contact: wejohnston@lbl.gov, Lawrence Berkeley
National Laboratory, mail stop: B50B-2239, Berkeley, CA, 94720, ph: 510-486-
5014, fax: 510-486-6363, http://www-itg.lbl.gov). This is report no. LBNL-
39613.

Preprint - International Journal of Digital Libraries

2 William Johnston, et al.

• transparent management of tertiary storage systems where
the original data is archived;

• facilitation of co-operative research by providing specified
users at local and remote sites immediate as well as long
term access to the data;

• incorporation of the data into other databases or
documents.

The WALDO (“wide-area large-data-object”) system is a
digital data archive that federates textual and URL linked meta-
data to represent the characteristics of large data sets. Semi-
automatic cataloguing of incoming data is accomplished by
extracting associated metadata and converting it into text
records, by generating auxiliary metadata and derived data, and
by combining these into Web-based objects that include persis-
tent references to the original data-components. Tertiary stor-
age management for the data-components (i.e., the original
datasets) is accomplished by using the remote program execu-
tion capability of Web servers to manage the data on a mass
storage system. For subsequent use, the data-components may
be staged to a local disk and then returned as usual via the Web
browser, or, as is the case in several of our applications, moved
to a high speed cache for access by specialized applications.
The location of the data-components on tertiary storage, how
to access them, and other descriptive material, are all part of
the LDO definition. The creation of object definitions, the
inclusion of “standardized” derived-data-objects as part of the
metadata, and the use of typed links in the object definition, are
intended to provide a general framework for dealing with many
different types of data, including, for example, abstract instru-
ment data and multi-component multimedia programs.

WALDO uses an object-oriented approach to provide for
capture, storage, catalogue, retrieval, and management of large-
data-objects and their associated metadata. The architecture
includes a collection of widely distributed services to provide
flexibility in managing storage resources, reliability and integrity
of access, and high performance access, all in an open environ-
ment where the use-conditions for resources and stored infor-
mation are guaranteed through the use of a strong, but
decentralized, security architecture.

The remainder of the paper is organized as follows. In
Section 2 we describe the motivation, model and architecture
for handling large-data-objects, and the elements, implementa-
tion, and applications of that architecture. We also briefly
describe the architecture of the Distributed Parallel Storage
System — a distributed cache that is used to provide a very
high-speed, network-based data cache, and which is a key ele-
ment of the large-data-object architecture. In Section 3 we
describe two applications of the LDO approach. In Section 4
we discuss some of the design issues and their resolution. In
Section 5 we briefly describe the security architecture. In
Section 6 we describe our experience and the status of the sys-
tem.

2 Distributed Large-Data-Objects

2.1 Motivation

The advent of shared, widely available, high-speed networks is
providing the potential for new approaches to the collection,
organization, storage, and analysis of large-data-objects. In one
typical example, high-volume health care video and image data
used for diagnostic purposes — e.g., X-ray CT, MRI, and
cardio-angiography, are collected at centralized facilities and,
through the use of the system described here, may be stored,
accessed, managed, and referenced at locations other than the
point of collection (e.g., the hospitals of the referring
physicians).

In health care imaging systems the importance of remote
end-user access is that the health care professionals at the refer-
ring facility (hospitals or clinics frequently remote from the ter-
tiary imaging facility) will have ready access to not only the
image analyst’s reports, but the original image data as well. Sim-
ilarly with data intensive, distributed scientific collaborations,
researchers at various sites remote from the data generation
and storage require ready access to the data objects. See, e.g.,
[11] and [7].

The importance of providing and managing distributed access
to storage is that laboratory instrumentation environments,
hospitals, etc., are frequently not the best place to maintain a
large-scale digital storage system. Such systems can have con-
siderable economy of scale in operational aspects, and an
affordable, easily accessible, high-bandwidth network can pro-
vide location independence for such systems.

2.2 Overview

Large-data-objects are a structured collection of metadata,
including links to data-components. The metadata typically
describes characteristics of the data components, provides
access methods information, access control information, etc.
Metadata frequently also includes derived data that provide, for
example, viewable versions of the data-components. In a sense
our LDOs are as much a catalogue entries as objects (since the
actual data is usually external to the LDO), but LDOs are
intended to be, and are used as, object definitions for large data
sets generated by various systems.

The LDO approach provides a mechanism for describing
and manipulating “objects” that are the result of federating
data-components from many different sources and locations:
local files, remote Web sites, remote mass storage systems, etc.
Since this work is in the realm of research and development, we
have chosen to use the MIME multipart message standard
([17], [18], [19], and [20]) to provide an open and extensible
mechanism for object definition. This is a rapidly changing

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 3

field, and this MIME-based approach may be replaced by the
World Wide Web Consortium, Meta Content Framework ([2]).

The elements of our large-data-object model include gener-
alized object definition (a class); groups of associated objects
called “collections”; and access, search, data entry and security
methods for managing the object definition. The object defini-
tion is manifested as a Web document that contains metadata
in the form of text and typed links to associated objects (e.g.,
derived information), and typed links to the original large-data-
component locations. The typed links are generally URLs with
an associated MIME type (see [17]). The typing allows a user
or application to locate appropriate data access methods in
advance of requesting a (potentially large) data component.
Each of the object components can typically be referenced as
an individual Web entity, and located, accessed, and manipu-
lated through Web servers using the HTTP protocol. Applica-
tions can use the HTTP protocol to request data components,
and users can access data directly via Web browsers. Data may
be returned directly to the browser or to an application that
can use the access method specified by the corresponding
MIME type. In the case of high-performance applications,
handles to the data on the distributed high-speed cache are
returned to the application.

A typical user interface to a large-data-object class using
this model can be illustrated by a collection of high resolution
microscope images that form a digital-photo collection (see
http://imglib.lbl.gov). In this case, the images are organized into
“sub-collections” (an associated set of objects of one class)
partly for ease of browsing and partly to facilitate curation.
The object class (collection) has associated search methods,
object access methods, and security methods to enforce use-
conditions. A Web browser accesses an LDO component via a
URL request that typically invokes a Web server cgi-script that
implements the necessary methods. The user requests may be

for searching, displaying some or all of the LDO components,
or modifying the LDO components (collection curation). The
digital images in this collection are generated by an off-line
scanning electron microscope and are loaded into the Lab’s
mass storage system by bulk file transfer. Sets of images, repre-
senting several days’ work are entered into the Image Library
with one operation. The textual metadata that is common to a
whole set is preloaded and copied automatically to each image,
the thumbnails are generated automatically. Later the curator
may add additional metadata for specific images. An example
of automatic LDO generation from an on-line instrument is
described later in this paper.

2.2.1 WALDO Example

To illustrate the WALDO approach to object libraries, we will
use a research image collection to illustrate the various user
interfaces and the overall model, as well as the structure of
large-data-objects.

The image library user typically first enters the top level col-
lection index (Figure 1) and initiates a search (on, e.g., the tex-
tual metadata as in Figure 2). The textual metadata search
method is provided by a modified version of glimpse [6]. The
result of the approximate search specified as in Figure 2 is
illustrated in Figure 3. The LDOs that satisfy the search are
represented as a set of “thumbnails” (derived data elements),
pointers to the primary data elements (e.g.,
“Fig._4d._bottom.bright” — a 1.4 Mbyte TIFF-image file in
this case), and the “context” in the tag-field in which glimpse
found the search term. The displayed context links to the
LDO definition document (Figure 4). The thumbnail image in

Figure 1. A top level collection index. Figure 2. The collection metadata search form.

4 William Johnston, et al.

Figure 3. The (partial) results of the search
specified in the form illustrated in Figure 2.

Figure 4. The Web browser
manifestation of an LDO definition
document.

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 5

Figure 5. A typical object representation that is automatically
derived from the original data when the LDO is instantiated.

Figure 6. The result of browsing the collection that contained one
of the results of the query illustrated in Figure 2.

Figure 7. The tertiary storage system
management interface. Data-components can
be selectively migrated from archival storage
back to on-line storage.

6 William Johnston, et al.

the LDO document links to (what is for this collection) the pri-
mary derived data element (a screen-size image, e.g., Figure 5).
Figure 6 illustrates one of the browser interfaces. The ability to
both search and browse based on the metadata are important
elements of our digital library model.

For the data-components that reside only on tertiary storage
(e.g., a tape-robot-based mass storage system), there is an
option for forcing migration of these LDO components back
to an on-line cache. The interface for managing the tertiary
storage (e.g., a hierarchical mass storage system) is illustrated in
Figure 7.

Another aspect of the model is that there are derived-data-
components that are viewable with “standard” Web browsers.
The original data-components — very large, high resolution,
full color TIFF format images in the case of the digital-photo
library or DICOM images in the case of medical libraries — are
typically not directly viewable.

2.3 Functionality Goals

Our model for the capabilities of a distributed large-data-object
system includes the following elements:

• real-time cataloguing of extensible, linked, multi-component
data-objects that can be asynchronously generated by
remote, on-line data sources

• class-based methods for management of the large-data-
objects

• on-line metadata, with cacheable off-line components.
• representation of the object components as Web-accessible

elements
• explicit association of access methods with the data

components
• flexible curator / collection-owner management of

collections of data-objects, including “any-time”
management of the collection organization and object
metadata

• globally unique and persistent naming of the objects and
their various components via URLs and URNs

• strong access control at the level of individual object
components based on use-condition certificates managed by
the data owner

• high-performance application access to the data-
components

• flexible and extensible approaches to searching.

2.4 LDO Structure, and WALDO Data Model and Software
Architecture

Our model for “objects” includes:

u A large-data-object (LDO), consisting of

• a standard set of identifying information (e.g., class,
unique id, owner, collection name)

• one or more typed links to the original data-components
• one or more typed links to derived data-components
• tags defining access control in terms of pointers to the

entities who set access conditions and pointers to the
servers where access condition certificates are located

• class-specific textual metadata

u An LDO is an instantiation of a class prototype. Each LDO
contains a subset of the data elements defined for its class.
An LDO is manifested as a persistent Web document, and
class browsers can display some or all of its components.
Small components, e.g., text and thumbnail images, may be
directly displayed by browsers. Data-components are
referenced by a persistent URL. An LDO class is provided
with
• search methods
• data component access methods
• data entry methods
• access control methods

u Collections consist of LDO’s and hierarchically organized
sub-collections of LDOs in that class

u Class / collection roles
• collection owner

- establishes agreements with the WALDO Web server
for resources

- defines the LDO classes for the collection
- defines the basic access control parameters, including

potential delegation of authority for setting access
conditions

• curators are users with write access to objects, and can
- add, delete, and modify LDOs or components of

LDOs
- manage the collection structure (can create sub-collec-

tions and may move LDOs between sub-collections)

Figure 8 illustrates the data flow and overall organization of the
WALDO architecture. It also indicates the central role of high-
speed cache which is used both for initial data collection, and
to provide subsequent high-speed access by applications.

The basic elements of the architecture (referring to Figure 8)
include:

• data collection systems and the instrument-network
interfaces (1)

• high-speed, network-based cache storage for receiving data,
for providing intermediate storage for processing, and for
high-speed application access (2)

• transparent tertiary storage (“mass storage”) management
for the data-components (8)

• processing mechanisms for various sorts of data analysis and derived data generation (3)

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 7

• data management that provides for the automatic
cataloguing and metadata generation that produces the
large-data-object definitions (4)

• data access interfaces, including application-oriented
interfaces (5)

• curator interfaces for managing both the metadata and the
LDO collection organization

• user access interfaces for all relevant aspects of the data
(applications, data, and metadata)

• flexible mechanisms for providing various searching
strategies (6)

• transparent security that provides strong access control for
the data components based on data-owner policies (7)

These elements are all provided with flexible, location-
independent interfaces so that they can be freely
(transparently) moved around the network as required for
operational or other logistical convenience.

2.4.1 The Distributed-Parallel Storage System—A High-
Performance Network Cache

A high performance, widely distributed, network storage
system is an essential component of a network-based large-
data-object environment. Within the high performance

network cache — a “middleware” service — the architectural
issues include:

• highly distributed and parallel cache operation
• distributed, autonomous component management
• user access methodologies
• security architecture

Distributing the components of a storage system through-
out the network can increase its capacity, reliability, perfor-
mance, and security. Usable capacity increases through the
aggregation of distributed storage components. Highly reliable
access can be provided through redundancy of data and stor-
age systems that are configured from components that have
little in common (e.g., location). Performance is increased by
the combined characteristics of parallel operation of many
sub-components, and the independent data paths provided by
a large network infrastructure. Security is potentially increased
by having many independent components, each of which has
local and independent enforcement mechanisms that can limit
the scope of a security breach.

The Distributed-Parallel Storage System (“DPSS”) is an
experimental system in which we are developing, implement-
ing, and testing these ideas. In most configurations, the DPSS
is used as a network-based, high performance, random access
logical block server designed to supply and consume high-

Application
u cache-based or

Web-based
access to LDO
components

LDO “object”
description

generation (4)

consumerproducer
(capture, catalogue)

Web browser
u data-user interface
u curator interface

Processing (3)
u generate:

• object template
• metadata
• derived represen-

tations
u manage initial

archival storage

search engine (6)

m
et

ad
at

a
DPSS (2)

u high speed data
cache for
incoming data

Web server
u LDO access

methods
u search engine

management
u cache/MSS

management (8)
u some LDO data-

components

Data
Source (1)

u collection
u buffering
u network

transport

DPSS (2)
u cache for high

speed application
access to data

MSS
u tertiary storage archiving

of large-data-components

local storage
u WALDO Web

server based
LDO
component
storage

access control (7)

public-key
infrastructure
use-condition

certificates

object management
(persistence, metadata mg’mt,

storage mg’mt)

(5)

(5)

Figure 8. The distributed Large-Data-Object overall architecture and data flow.

8 William Johnston, et al.

speed data streams for other network-based processing sys-
tems. (See [21].)

The DPSS is a “logical block” server whose functional com-
ponents are distributed across a wide-area network. (See Figure
9.) The DPSS is fundamentally a random-access logical block
server: There is no inherent organization to the blocks, and in
particular, they would never be organized sequentially on a
server. The data organization is determined by the application
as a function of data type and access patterns so that a large
collection of disks and servers can operate in parallel enabling
the DPSS to perform as a high-speed data source or data sink.

At the application level, the DPSS provides a semi-persis-
tent cache of named data-objects, and at the storage level it is a
logical block server. Although not strictly part of the DPSS
architecture, the system is usually provided with application
libraries that implement data set access methods. These pro-
vide object-like encapsulation of the data in order to represent
complex user-level data structures so that the application does
not have to retain this information for each different data set.
Data access methods currently include simple video data access
and the more complex access methods required by TerraVision
and STAR.2 The access method converts the application
requests into logical block requests. These logical block
requests are then sent to the DPSS Master which serves two

functions: logical block name translation and resource manage-
ment. Resulting physical block requests are forwarded to disk
servers that return data directly to the application using parallel
data paths.

3 Applications

We currently have two example applications of the LDO
architecture. One is a metadata-based digital image library
system that is oriented toward curation. That is, the structure
and tools of the system are intended to provide for easy and
continuous maintenance by the data owners. The second
example is a real-time data capture and cataloguing system that
is oriented toward the automated capture of data from on-line
instruments and the creation of digital libraries on-the-fly.

returned data stream
(“parallel third-party” transfers
directly from the storage servers

to the application)

Application
(client)

u block storage
u block-level access control

Disk Servers

security context - 1
(system integrity &
physical resources) Application data access

methods
(data structure to logical block-

id mappings - e.g.:
u JPEG video
u multi-res image pyramids
u Unix r/w
u XDR

data
requests

security context - 2
(data use conditions)

Agent-based
management of dataset

metadata - locations,
state, etc.

Agent-based
management
of redundant

Masters

Agent-based management of
storage server and network state

vis a vis applications

mem
buf

physical
block

requests logical block
requests

Data Set Manager
u user security context

establishment
u data set access control
u metadata

Request Manager
u logical to physical name

translation
u cache management

DPSS API
(client-side library)

Resource Manager
u allocate disk resources
u server/disk resource access control

DPSS Master

Figure 9. The Distributed-Parallel Storage System architecture.

2. TerraVision is an interactive terrain navigation application using multi-reso-
lution, tiled, image pyramids [13]. STAR is an external data representation
access (XDR) method [7].

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 9

3.1 Curator Managed Collections: Digital-Image Libraries

Digital image libraries require flexible curator management
functions so that curators from a variety of backgrounds can
easily maintain their own collections. One user community is
scientists who maintain annotated image collections that are
associated with their scientific laboratory environment. These
collections are used like a laboratory notebook, and are
continuously updated. See, for example (as in Figure 6) http://
imblib.lbl.gov/cgi-bin/ImgLib/displaytag/LUNG_DEMO/tags/
Fig.2?both=small) .

Another use of this flavor of the system is the “Berkeley Lab
On-line Photo Archive” (http://imglib.lbl.gov/ImgLib/photo-
archive.html). This application is essentially the same as the
annotated scientific image collection, but the use
characteristics are somewhat different. In particular, this
collection undergoes a lot of rearrangement as it grows and the
subject matter diversifies. Persistent references are also very
important in this collection, as the intent is for many other
documents to use this collection to provide their images via
links (e.g., the “LBL Newsmagazine, Fall 1981: 50th
Anniversary Issue” at http://imglib.lbl.gov/LBNL_Res_Revs/50th).
This has raised some interesting design issues that are
discussed in Section 4.

3.2 Automatically Generated Collections: Real-Time Capture and
Cataloguing of Data from On-line Instruments

The model for real-time capture and cataloguing is that a data
source generates units of data that have associated auxiliary
information. As the data is processed in real-time, the “units”
can be identified as such, and the appropriate associated data
can also be identified.

A key issue with “identification” of a unit of data is to know
when the unit has been completely received so that cataloguing
and processing to create an LDO can commence. This identi-
fication can take the form of explicit in-band markers in the
data stream, or out-of-band notification that all of the data of
one unit has been sent, or the identification could be implicit,
such as a data unit being defined by a timing mechanism (e.g.,
one data unit is whatever is received in some specified period
of time) or by a quantity mechanism (e.g., one data unit is a
fixed quantity of data).

Likewise, the acquisition of associated data (metadata pre-
cursors) can be via explicit in-band or out-of-band separate
data units, or implicit (e.g., the timestamp of a data unit whose
boundary is defined by a point in time).

3.2.1 Video Data: On-line Cardio-angiography

An example of a medical application that uses the
automatically managed approach is a system that provides for
collection, storage, cataloguing, and playback of video-
angiography data.3

“Cardio-angiography is used to monitor and restore coronary blood
flow, and though clinically effective, the required imaging systems
and associated facilities are expensive. To minimize the cost of such
procedures, health care providers are beginning to concentrate these
services in a few high-volume tertiary care centers. Patients are
typically referred to these centers by cardiologists operating at clinics
or other hospitals; the centers then must communicate the results
back to the local cardiologists as soon as possible after the
procedure. The advantages of providing specialized services at
distant tertiary centers are significantly reduced if the medical
information obtained during the procedure is not delivered rapidly
and accurately to the referring physician at the patient’s home
facility. The delivery systems currently used to transfer patient
information between facilities include interoffice mail, U.S. Mail,
fax machine, telephone, and courier. Often these systems are
inadequate and potentially could introduce delays in patient care.”
(From [12].)

Using a shared, metropolitan area ATM network, and a high-
speed distributed data handling system, video sequences are
collected from the video-angiography imaging system, then
processed, catalogued, stored, and made available to remote
users. This permits the data to be made available in near real-
time to remote clinics (see Figure 10). The LDO becomes
available as soon as the catalogue entry is generated — derived
data is added as the processing required to produce it
completes. Whether the storage systems are local or
distributed around the network is entirely a function of the
optimal logistics.

This application was developed in the Kaiser CalREN
project, a joint project of Lawrence Berkeley National Labora-
tory, Kaiser Permanente, Philips Palo Alto Research center,
and the Pacific Bell CalREN program [12]. Angiography data
is collected directly from a Philips scanner by a computer sys-
tem in the San Francisco Kaiser hospital Cardiac Catheteriza-
tion Laboratory. This system is, in turn, attached to an ATM
network provided by the National Transparent Optical Net-
work testbed (NTON). NTON provides OC-3 (155 Mbits/s)
and OC-12 (622 Mbits/s) connections to a very high-speed
backbone (see [15]). When the data collection for a patient is
complete (about once every 20–40 minutes), 500–1000 mega-
bytes of digital video data is sent across the ATM network to
LBNL (in Berkeley) and stored first on the DPSS, and then the
LDO object definitions are generated and made available via
the Web. Auxiliary processing and archiving to one or more
mass storage systems proceeds independently. This process
goes on 8–10 hours a day.

The WALDO management tools provide the Web based
user interface to the data, and to appropriate viewing applica-
tions. Hospital department-level Web-based patient databases
can then refer directly to the data in WALDO without dupli-

3. Cardio-angiography imaging involves a two plane, X-ray video imaging sys-
tem that produces from several to tens of minutes of digital video sequences
for each patient study for each patient session. The digital video is organized
as tens of data-objects, each of which are of the order of 100 megabytes.

10 William Johnston, et al.

cating that data, or being concerned about tertiary storage man-
agement (which is handled by WALDO).

Figures 11-13 illustrate the user environment provided by
the WALDO model for this application.

Figure 11 illustrates browsing the top-level of the angiogra-
phy collection. A “year” or “hospital-of-patient-origin”, or
both, will probably eventually be added to the collection hierar-
chy above these individual study pointers as part of the collec-
tion curation. If this is done, then the persistence mechanisms
described in Section 4 will come into play so that links created
while the collection has its current organization will remain
valid.

Figure 12 illustrates browsing a collection of LDOs (in this
case, related by the fact that they are all for a single patient
study). At the top of the page is a brief description of the col-
lection (the study identifiers in this case), some standard
instructions, and the tertiary storage migration interface. This is
followed by the two special applications that understand the bi-
plane video format. These are invoked from the Web page, and
the normal mode of operation is to view all of the video seg-
ments of a study in sequence. When these viewers are invoked
they are also given all of the pointers to the original dataset

components of the LDO. To facilitate access from unmodified
Web browser environments, one of derived data types is an
MPEG coding of the video.

Figure 13 illustrates the result of invoking the bi-plane video
player that accesses data from the network cache.

4 Experience and Design Issues

Probably the predominant characteristic of cataloguing live
data sources is that the LDO components — data-
components, metadata and derived data — show up
asynchronously as a natural result of the automated processing
of the data-components and metadata that go into making up
an LDO. To accommodate automated processing, and meet
the capability objectives, several different methods of
representing, storing, and presenting the information resulting
from LDO generation have been tried in the course of the
evolution of the LDO implementation. The approach that has
addressed several issues is to have the various Web accessible
representations of LDOs and their components be dynamically

Kaiser San Francisco Hospital
Cardiac Catheterization Lab

(digital video capture)

NTON
network
testbed

to the MAGIC
testbed

LBNL
WALDO server and

DPSS for data
processing, cataloguing,

and storage

Kaiser
Division of
Research

(physicians)

Kaiser Oakland
Hospital

(physicians and
databases)

Lawrence Berkeley
National Laboratory and

Kaiser Permanente
On-line Health Care
Imaging Experiment San Francisco Bay Area

Figure 10. Physical architecture of the health care imaging application as it is embedded in the National Transparent Optical Network testbed.

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 11

Figure 11. An index built from incoming angiography video data in
real-time.

Figure 12. The browser interface for a sub-collection that
represents one patient study (multiple video clips).

Figure 13. The user interface of
the special application that
displays the bi-planar video-
objects directly from the DPSS
cache.

12 William Johnston, et al.

generated by a collection of object management methods.
These methods typically scan the collection for new object
components, and generate an html document that presents
those components (e.g., the object browser illustrated in
Figure 12).

4.1 Dynamic indexing

Since the complete large-data-object is produced over as much
as several days (some of the processing for the derived files —
e.g., MPEG coding of video — can be very time consuming) a
natural way to produce the Web representations of the LDO
definitions is to generate them on-the-fly. For example, the
LDO definition document shown in Figure 4 was generated
using the LDO access method “displaytag”, invoked by the
Web invocation:

http://imglib.lbl.gov/cgi-bin/ImgLib/displaytag/
LUNG_STRUCTURE/tags/Fig_4d._bottom.bright (1)

Figure 6 illustrates a dynamically created browsable index for
the “Lung_Structure” collection of high-resolution digital
microscope images. This index is generated by a single Web cgi
invocation that looks like:

http://imglib.lbl.gov/cgi-bin/ImgLib/
makeindex?LUNG_STRUCTURE=browse (2)

(In other words, the “makeindex” program is invoked with
arguments “LUNG_STRUCTURE” and “browse” to index this
sub-collection.)

This technique provides the curator with the flexibility to
reorganize the collections and be assured that the browsable
indexes the user sees are always up-to-date.

This same general approach is used for most Web-based
manipulation of LDOs. However, while this approach provides
several of the desired capabilities, it does not, on the face of it,
provide the required persistence characteristics.

4.2 Persistence

There are several aspects of persistence that we would like to
provide, including global and easily usable names for both the
LDOs and their primary components.

Naming uniqueness, and persistence (up to, but not includ-
ing, the Internet DNS name of the WALDO Web server), can
be provided by including a globally unique object identifier
(OID) in each LDO. Our approach involves several points.

First, we generate an OID during the LDO creation that is
of the form:

Internet_DNS_name-process_id-
time_of_day_in_nanoseconds (3)

Second, as one of the LDO methods, we have provided the
capability to locate and refer to an LDO component:

find_component (OID, component_name) (4)

Which can be invoked as a cgi request:

http://imglib.lbl.gov/cgi-bin/ImgLib/
find_component?<OID>&<component_name> (5)

Ignoring, for the moment, the general issue of LDO
component naming, at least one standard invocation of this
function, e.g.,

find_component (OID,’LDO-html’) (6)

will always return an html version of the LDO definition
corresponding to the given OID. (E.g., Figure 4.)

With standard tags (or their aliases), the find_component
method can perform a search of OID-space and return the
requested component based on the tag. For example

http://imglib.lbl.gov/cgi-bin/ImgLib/
find_component?<OID>&thumbnail (7)

obtains the “thumbnail” derived visual for any LDO in those
classes that use the thumbnail concept.

To provide an “easily used” persistent reference we build a
permanently instantiated (but periodically updated) index docu-
ment at the collection level. The index entries consist of the
collection name (which can change as the collection is reorga-
nized), a short LDO description, and the text of the persistent
URL (e.g., (5), above) that will return the html version of the
LDO. For example, the index entry

BERKELEY-LAB HISTORY SEABORG-
PERSPECTIVE JFK visiting Lawrence Radiation
Laboratory, March 23, 1963
(OID=imglib.lbl.gov:123426:83341287767634000)

URL= http://imglib.lbl.gov/cgi-bin/ImgLib/
find_component?imglib.lbl.gov-
12342683341287767634000&LDO-html (8)

is the text string defining the name of the underlying link:

<a href="http://imglibe/ImgLib/COLLECTIONS/
BERKELEY-LAB/HISTORY/SEABORG-
PERSPECTIVE/index/96B05392.html">
BERKELEY-LAB HISTORY SEABORG-
PERSPECTIVE JFK visiting Lawrence Radiation
Laboratory, March 23, 1963
(OID=imglib.lbl.gov:123426:83341287767634000)URL
= http://imglib.lbl.gov/cgi-bin/ImgLib/
find_component?imglib.lbl.gov-12346-
83341287767634000&LDO-html) (9)

As an optimization, the actual links may point to a “local” copy
of the html version of the LDO metadata, rather than to the cgi
invocation that searches for and returns the “real” metadata

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 13

(i.e., the query represented by the version of the URL in (8)).
Both the html document that is the index set, and the local
html version of the LDO, are automatically updated
periodically to maintain consistency with the underlying
metadata. The index document is kept in a “well known”
location, typically at the top level of a collection hierarchy.

This technique addresses a number of related issues. “Easy
use” comes from being able to “manually” browse a complete
index that is a persistent Web document whose entries contain
enough information so that:

• visual browsing is meaningful;
• Web search engines can pickup this document and index

the LDO keywords;
• the URL is visible to the human user so that it can be “cut

and pasted” from the Web browser interface.

4.2.1 URNs and Persistent Web Server Names

One issue of persistence that is not addressed by the
techniques described above is that of naming the Web server
where a collection is located (and a server, therefore, that can
respond to a query like (7)).

The LDO approach is intended to be consistent with the
URN concept ([16]). URNs have two aspects: naming and res-
olution [22]. Naming must conform to a scheme that ensures
uniqueness. Resolution is the process of locating a system
(resolver) that can return the location of a server capable of
providing (among other things) the URL for the named
resource.

For example, the URN for an LDO can include the OID
and any of the metadata (e.g. the keywords), plus the LDO-
server name. A URN can provide a location independent and
globally persistent “name” for the LDO. When the URN is
resolved, it can return the current server where the LDO is
located. While the URN never changes, what it resolves to will
change, when, e.g., it is necessary to update the metadata, or if
the LDO collection home Web server changes.

In the case of LDOs, in order to acquire a resource we need
the name of the Web server that can resolve an OID to a
resource / object. While in general one may wish to provide a
URN for every OID, if LDOs are organized into collections
that are constrained to reside on single systems (though there
may be multiple instances of these single systems) — in other
words, a sub-collection is not split across several Web servers
— then assigning URNs for the collection name is sufficient.
In this circumstance, given the collection name, resolving the
corresponding URN will return the name(s) of servers that can
provide the OID-labeled resource. (This ignores the issue dis-
cussed in the design document noted below — of moving an
LDO from one collection to another. URNs at the collection
level also assume that you know the collection that contains
the object of interest.)

In principle, several URN mechanisms “exist.” In one
approach [4], the Domain Name System can be used to locate
servers that can resolve names in a given name space. (So the

collection_name identifies a collection of LDOs in terms of a
collection_name_namespace.) Web servers could be established
that responded to a query of the form “what are the DNS
names of the Web servers that have this collection”.

In a second approach [1] the “Handle” resolver system can
directly provide the answer to the query above, as well as sup-
plying other information about the collection, given the collec-
tion URN. In this case the URN might look like
urn:hdl:LDO:collection_name and the Handle System would
return a list of Web Servers that could directly satisfy OID-
based requests for LDOs in that collection. The uniqueness of
collection names comes from the Handle System concept of
hierarchical naming authorities.

4.3 Class and Object Structure

More information on the class and object structure, tag-field
syntax, etc., may be found at http://www-itg.lbl.gov/WALDO .

5 Security

5.1 Security Model

The WALDO security model is intended to provide
distributed management of the object use-conditions, as well
as distributed access control for the users. (See [10].) WALDO
security involves four entities. The Web Certificate Authority
agent (e.g., the WebMaster) that manages the server resources
and acts as a trusted third-party that provides the security
services. The class collection owner who defines the class
template and grants read/write permission for objects. The
curators who are the people granted write permission and can
add, delete, and modify certain class tags and object fields. And
users of the information who are typically granted read-only
access. Access control methods can be specified on a per-
LDO basis, or (the typical case) specified as part of the class
template, and inherited by individual LDOs.

The access control methods protect extra-LDO data (i.e.,
data referred to by links within the LDO) with the same mech-
anisms as intra-LDO data since access to extra-LDO data is
mediated by access to the LDO. Protection of the extra-LDO
data from non-LDO access is affected only if that data is
behind an access control gateway with the same policies as the
LDO access control.

Currently two access control methods are provided:
the.htaccess mechanism, with or without user authentication,
and a public-key infrastructure (PKI) and certificate based
access control.

The.htaccess access control operates in the usual way, and
involves organizing LDOs in Web server directories that have
access control lists associated with them.

The PKI access control method uses public-key certificates
issued by the collection owner, potentially on a per object
basis, to provide general use-conditions. At the moment, this

14 William Johnston, et al.

mechanism is primarily used to allow a collection owner
(potentially remote from the WALDO Web server) to specify
and post (e.g. on a local certificate server) access control lists
(ACLs) in the form of signed certificates. These certificates are
used as described below to provide strong access control for
LDOs. The use-condition certificates that specify access rights
will provide a condition on the user identity (e.g., individual
name, group or organization membership) and the type of
access permitted (e.g., read or write a class/collection, sub-col-
lection, object, or object field).

While complex schemes can be imagined and implemented
within this general framework, we have currently defined
mechanisms for the following (which is based on our experi-
ence in the LBNL Image Library). Objects can inherit their
access conditions from the collection class template. This
allows for ACLs that refer to an entire collection. On a per-
object basis, the class access conditions can be overridden by
setting inherit_accessability to no_inherit, and specifying the
Class_owner, etc., tags, in which case these objects require
explicit permission to access. The same holds for individual
tag-fields in the object. Access rights are restrictive — if the
access specification of a tag is delegated, then specific permis-

sion is required for any access to that tag field. This allows
restricting access to certain of the LDO components. Again,
this may be inherited from the class security prototype, or spec-
ified on a per-object basis. Only the collection owner may
define the access condition fields, but specific access granting
may be delegated. The general approach of an object inheriting
accessibility puts an additional burden of correctness on the
access control gateway, but is essential for ease of managing
large collections.

The relationships of the major elements of the security
architecture are illustrated in Figure 14.

Policy-based confidentiality of data is an important aspect of
medical, commercial, and some scientific information systems
in shared environments. The long term goal of our security
architecture work is to provide access control based on owner
specified use conditions rather than explicit enumeration of
ACLs (which are a special case of use-conditions.) The status
of the general approach may be found at http://www-itg.lbl.gov/
security . This approach is based on the emerging security ser-
vices for distributed enterprise in both the commercial and sci-
entific communities. (See [10].)

client
application

(e.g. Web
browser)

user

certificate servers
u identity
u use-conditions
u attributes

resource
(e.g. LDO or
collection)

au
th

or
iz

e
op

er
at

e
in

fo
rm

at
io

n
au

th
en

tic
ity

policy engine
u matches use-conditions and

attributes
u issues a capability certificate

for an entity (user)

access control gateway
u acquire capability
u authenticate user
u enforce “check immediate”

requirements (e.g. re-validate user
identity and/or use-condition
certificates, collect payment, etc.)

Certification
Authority
(identity)

Attribute Authority
(user characteristics)

Resource Owner
generated

use-conditions

Figure 14. The Use-Condition based Security Architecture.

Real-Time Digital Libraries Based on Widely Distributed, High Performance Management of Large-Data-Objects 15

6 Current Experience, Status, and Conclusions

The WALDO large-data-object system has been developed
and used at LBNL since early 1995. It currently manages three
major collections, each with a different use and curator. The
original collection is a scientific image database that supports a
small research group. This collection now has over 1400 1–
4MByte scanning electron microscope images indexed and
described as LDOs. This research group routinely uses
WALDO to locate, view, and manage their image collection.
They also use WALDO to easily share images with colleagues
at other institutions.

The second collection is the cardio-angiography video data
repository, and was built in support of a research and develop-
ment collaboration between Kaiser Permanente Division of
Research and Lawrence Berkeley National Laboratory. In this
project we have been gathering data on a daily basis since June,
1996. We currently have about 60 patient cardio-angiography
studies consisting of about 800 individual video clips stored on
the DPSS plus an additional 140 studies that are only on the
Mass Storage System. All this data has been automatically cap-
tured, sent across a wide-area ATM network, catalogued and
entered into WALDO with minimal human intervention. The
capture process recovers well from short-term (less than 12
hour) network outages. In this application by virtue of a cache
located at the instrument, WALDO’s management of on-line
data is being evaluated as an alternative to the current hospital
use of film. The ability of physicians to view the videos with-
out having to travel to the San Francisco Cardiology facility
where the films are stored is a key advantage. However, any
network or server failures of even 1 or 2 minutes duration at
the time a physician wishes to view a study is a serious incon-
venience. Most of the patient-specific associated textual data
about the images is kept in restricted-access hospital data
bases, and images are referenced by having URLs pointing to a
WALDO server.

The third collection is a on-line digital photo archive. We
currently have about 700 images on-line selected from the
hundreds of thousands of photos in Berkeley Lab’s archive.
These on-line photos are used to support a variety of Web
publications (e.g., [8]) and for general browsing or research by
people within and outside of the Lab.

The concept of real-time collection of data from on-line
instrument systems, followed by automatic cataloguing that
results in an elementary, but useful object store, is quite pow-
erful. It allows immediate meaningful access to large classes of
data that can undergo refinement over time as the knowledge
about the data increases. A high-speed, network-based distrib-
uted cache plays a central role in our approach, providing stor-
age for buffering incoming data, intermediate processing, and
as an application cache. An experimental security architecture
provides data-owner defined, per-object access control, and is
intended to explore the issues and capabilities for on-line and
widely available, but strongly protected, sensitive information.

7 Acknowledgments

The overall approach based on wide-area network distributed
high-speed caches has evolved over several years with funding
from the Mathematical, Information, and Computational
Sciences Division of the Office of Energy Research, U. S.
Department of Energy, and DARPA Information Technology
Office (the DPSS), and from the Lawrence Berkeley National
Laboratory all of which are gratefully acknowledged.

In the Kaiser CalREN project, E-J. Pol of Philips Research,
Palo Alto, CA, designed and implemented the workstation
interface for the cardio-angiography system. Dr. J. Terdiman,
of the Kaiser Permanente Division of Research provided the
leadership for the health care aspects of the project. Dr. Bob
Lundstrum, Kaiser San Francisco Hospital, Cardiac Catheter-
ization Laboratory, provided guidance and information spe-
cific to the health care application. Pacific Bell, through its
CalREN program, provided funding for originally connecting
the LBNL, Kaiser, and Philips sites to the SF Bay Area ATM
network. Sun Microsystems assisted in various ways, including
loaning equipment to several Kaiser sites.

Mary Thompson directs the WALDO project, Brian Tier-
ney directs the DPSS project, and Case Larsen is the imple-
menter of the underlying security architecture. The LungLab
collection is a collaboration with Jacob Bastacky, Lung Micros-
copy Group, Molecular and Nuclear Medicine Department,
Life Sciences Division of Lawrence Berkeley National Labora-
tory

Finally, one of us (Johnston) would like to acknowledge
Ace Allen, M.D., of the KU Medical Center in Kansas City for
enthusiastic early support of the idea of networked medical
information systems; Ms. Sue Kwentus, RN, and the MCC
HOST/OSL group, for focusing some of the early ideas; and
Sprint generally, and Lt. Col. John Strand, U.S. Army (ret.),
now Director of Technology Planning and Integration at
Sprint, in particular, for support of the MAGIC backbone net-
work (without which this work probably would not have been
done) (See [14]).

8 References

[1] W. Arms, D. Ely. “The Handle System”, An Internet
Engineering Task Force, Uniform Resource Identifiers
working group draft available at http://
www.ietf.cnri.reston.va.us/ids.by.wg/uri.html

[2] T. Bray, R. V. Guha, “An MCF Tutorial.” http://
www.w3.org/TR/NOTE-MCF-XML/MCF-tutorial.html

[3] The Distributed-Parallel Storage System (DPSS) Home
Page (http://www-itg.lbl.gov/DPSS)

[4] R. Daniel, M. Mealling. “Resolution of Uniform
Resource Identifiers using the Domain Name System”,
An Internet Engineering Task Force, Uniform Resource
Names working group draft available at http://
www.ietf.cnri.reston.va.us/ids.by.wg/urn.html

16 William Johnston, et al.

[5] Fuller, B., I. Richer “The MAGIC Project: From Vision
to Reality,” IEEE Network, May, 1996, Vol. 10, no. 3.

[6] Manber, U. and S. Wu, “GLIMPSE: A Tool to Search
Through Entire File Systems”. University of Arizona
Computer Science Technical Report TR 93-34. Available
at http://glimpse.cs.arizona.edu.

[7] Greiman, W., W. E. Johnston, C. McParland, D. Olson,
B. Tierney, C. Tull, “High-Speed Distributed Data
Handling for HENP”. International Conference on
Computing in High Energy Physics, Berlin, Germany,
April, 1997. Also available at http://www-itg.lbl.gov/STAR .

[8] J. L. Heilbron, Robert W. Seidel, Bruce R. Wheaton,
“Lawrence and His Laboratory: A Historian’s View of
the Lawrence Years.” http://www.lbl.gov/Science-Articles/

Research-Review/Magazine/1981/index.html

[9] See http://www-itg.lbl.gov/ImgLib/ImgLib_intro.html

[10] Johnston, W. and C. Larsen, “Security Architectures for
Large-Scale Remote Collaboratory Environments: A
Use-Condition Centered Approach to Authenticated
Global Capabilities” (draft at http://www-itg.lbl.gov/security/
publications.html)

[11] W. Johnston, and D. Agarwal, “The Virtual Laboratory:
Using Networks to Enable Widely Distributed
Collaboratory Science” A NSF Workshop Virtual
Laboratory whitepaper. (See http://www-itg.lbl.gov/~johnston/
Virtual.Labs.html)

[12] Kaiser - LBNL - Philips CalREN project. See http://www-
itg.lbl.gov/Kaiser/LKP.

[13] “TerraVision: A Terrain Visualization System”. Y.
Leclerc and S. Lau, Jr. SRI International, Technical Note
#540, Menlo Park, CA, 1994. Also see: http://
www.ai.sri.com/~magic/terravision.html

[14] MAGIC (Multidimensional Applications and Gigabit
Internetwork Consortium) is a gigabit network testbed
that was established in June 1992 by the U. S.
Government’s Advanced Research Projects Agency
(ARPA). The testbed is a collaboration between LBNL,
Minnesota Supercomputer Center, SRI, Univ. of Kansas,
Lawrence, KS, USGS - EROS Data Center, CNRI,
Sprint, U. S. West, Southwest Bell, and Splitrock
Telecom. More information about MAGIC may be
found on the WWW home page at: http://www.magic.net

[15] “National Transparent Optical Network Consortium”.
See http://www.ntonc.org . (NTONC is a program of
collaborative research, deployment and demonstration of
an all-optical open testbed communications network.)

[16] “Functional Requirements for Uniform Resource
Names”. K. Sollins, L. Masinter. Internet Engineering
Task Force, Request for Comment no. 1737. December,
1994. Available at http://ds.internic.net/rfc/rfc1737.txt .

[17] “Multipurpose Internet Mail Extensions (MIME) Part
Two: Media Types”. N. Freed and N. Borenstein.
Internet Engineering Task Force, Request for Comment
no. 2046. November, 1996. http://info.internet.isi.edu:80/in-
notes/rfc/files/rfc2046.txt

[18] J. Palme and A. Hopmann, “MIME E-mail
Encapsulation of Aggregate Documents, such as HTML
(MHTML).” ftp://ds.internic.net/rfc/rfc2110.txt

[19] E. Levinson, “Content-ID and Message ID Uniform
Resource Locators.” ftp://ds.internic.net/rfc/
rfc2111.txt

[20] E. Levinson, “The MIME Multipart / Related Content-
type.” ftp://ds.internic.net/rfc/rfc2112.txt

[21] Tierney, B., W. Johnston, G. Hoo, J. Lee, “Performance
Analysis in High-Speed Wide-Area ATM Networks:
Top-to-Bottom End-to-End Monitoring”, IEEE
Network, May, 1996, Vol. 10, no. 3. LBL Report 38246,
1996. (Also see http://www-itg.lbl.gov/DPSS/papers.html .)

[22] “Uniform Resource Names: A Progress Report”, The
URN Implementer Group. D-Lib Magazine, February
1996 (http://www.dlib.org/dlib/february96/02arms.html)

